4.8 Article

Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network

期刊

CURRENT BIOLOGY
卷 26, 期 5, 页码 686-691

出版社

CELL PRESS
DOI: 10.1016/j.cub.2016.01.017

关键词

-

资金

  1. ICREA Funding Source: Custom
  2. European Research Council [295129] Funding Source: Medline
  3. Wellcome Trust [091593] Funding Source: Medline

向作者/读者索取更多资源

The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1-3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]-particularly in DMN regions [6-8]. Mechanistic support for the DMN's role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples-both during sleep [9, 10] and awake deliberative periods [11-13]. Ripples are ideally suited for memory consolidation [ 14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16-19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20-22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24-26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs-like the DMN-unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据