4.3 Article

System providing automated feedback improves task learning outcomes during child restraint system (CRS) installations

期刊

TRAFFIC INJURY PREVENTION
卷 21, 期 8, 页码 575-580

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15389588.2020.1829607

关键词

Child restraints; child safety; child seat; misuse; CRS; installation errors

资金

  1. Battelle Engineering, Technology and Human Affairs (BETHA) Endowment

向作者/读者索取更多资源

Objectives The objective was to build and test an automated, interactive educational system to teach adults how to install a child restraint system (CRS) into a vehicle seat. Methods The automated feedback system (AFS) consisted of a mockup vehicle fixture, convertible CRS, and doll. Sensors were implemented into the equipment so that forward-facing (FF) CRS installation errors could be detected. An interactive display monitor guided users through the CRS installation process and alerted them when steps were done incorrectly. Sixty adult volunteers were recruited and randomized into either the treatment group or the control group. The treatment group used the AFS to guide them through a practice installation. The control group also completed a practice installation using the same equipment fixture without the feedback feature turned on; they only had standard printed instruction manuals to guide their tasks. Then, participants from both groups completed a second CRS installation in a real vehicle with standard instruction manuals only. The frequencies and types of errors in all the installations were evaluated by a Child Passenger Safety Technician (CPST). Error rates were compared between the treatment and control groups using lower-tailed t-tests and Pearson's chi-square tests. Error rates were evaluated considering minor and serious errors together and also considering serious errors alone. Results Compared to the control group, participants who trained with the AFS exhibited fewer overall errors (minor and serious) in their fixture installations (p < 0.0001) as well as their follow-up vehicle installations (p < 0.0001). Specifically, participants in the treatment group had fewer errors in choosing an installation method, locking the seat belt (SB), tightening the SB or lower anchors (LA), and tightening the harness (p = 0.0002, p = 0.0003, p = 0.0084, and p = 0.0098, respectively, compared to control group during follow-up vehicle installations). The treatment group also performed significantly better than the control group when only serious errors were considered. Conclusions An automated feedback system is an effective way to teach basic CRS installation skills to users.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据