4.2 Article

Irregular Bone Defect Repair Using Tissue-Engineered Periosteum in a Rabbit Model

期刊

出版社

KOREAN TISSUE ENGINEERING REGENERATIVE MEDICINE SOC
DOI: 10.1007/s13770-020-00282-4

关键词

Tissue engineering; Periosteum; Irregular bone; Bone defect

资金

  1. Orthopaedic Institute of the 2nd Hospital of Lanzhou University (Lanzhou, China)
  2. Subject Construction Program of Shanghai Pudong New District Health and Family Planning Commission [PWZz2017-24]

向作者/读者索取更多资源

Background: In previous studies, we succeeded in repairing a long bone defect with tissue-engineered periosteum (TEP), fabricated by incorporating rabbit mesenchymal stem cells with small intestinal submucosa. In this study, we investigated the feasibility of allogeneic irregular bone defect repair using TEP. Methods: We performed a subtotal resection of the scapula in 36 rabbits to establish a large irregular bone defect model. The rabbits were then randomly divided into three groups (n = 12 per group) and the defects were treated with TEP (Group 1), allogeneic deproteinized bone (DPB) (Group 2) or a hybrid of TEP and DPB (Group 3). At 4, 8, and 12 weeks after surgery, the rabbits were sacrificed, and the implants were harvested. X-ray radiographic and histological examinations were performed to detect bone healing. Ink-formaldehyde perfusion was introduced to qualitatively analyze vascularization in TEP engineered new bone. Results: The repair of scapular defects was diverse in all groups, shown by radiographic and histological tests. The radiographic scores in Group 1 and Group 3 were significantly higher than Group 2 at 8 and 12 weeks (p < 0.05). Histological scores further proved that Group 1 had significantly greater new bone formation compared to Group 3 (p < 0.05), while Group 2 had the lowest osteogenesis at all time-points (p < 0.001). Ink-formaldehyde perfusion revealed aboundant microvessels in TEP engineered new bone. Conclusion: We conclude that TEP is promising for the repair of large irregular bone defects. As a 3D scaffold, DPB could provide mechanical support and a shaping guide when combined with TEP. TEP engineered new bone has aboundant microvessels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据