4.8 Article

Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals

期刊

CURRENT BIOLOGY
卷 26, 期 14, 页码 1873-1879

出版社

CELL PRESS
DOI: 10.1016/j.cub.2016.05.012

关键词

-

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB13020400]
  2. National Key Basic Research Program of China (973 Program) [2013CB835203]
  3. Yunnan province
  4. High-end Scientific and Technological Talents program [2013HA020]
  5. National Natural Science Foundation of China [31321002, 31325013, 31471201, 31170378]

向作者/读者索取更多资源

Studies of genetic adaptation, a central focus of evolutionary biology, most often focus on the host's genome and only rarely on its co-evolved microbiome. The Qinghai-Tibetan Plateau (QTP) offers one of the most extreme environments for the survival of human and other mammalian species. Yaks (Bos grunniens) and Tibetan sheep (T-sheep) (Ovis aries) have adaptations for living in this harsh high-altitude environment, where nomadic Tibetan people keep them primarily for food and livelihood [1]. Adaptive evolution affects energy-metabolism-related genes in a way that helps these ruminants live at high altitude [2, 3]. Herein, we report convergent evolution of rumen microbiomes for energy harvesting persistence in two typical high-altitude ruminants, yaks and T-sheep. Both ruminants yield significantly lower levels of methane and higher yields of volatile fatty acids (VFAs) than their low-altitude relatives, cattle (Bos taurus) and ordinary sheep (Ovis aries). Ultra-deep metagenomic sequencing reveals significant enrichment in VFA-yielding pathways of rumen microbial genes in high-altitude ruminants, whereas methanogenesis pathways show enrichment in the cattle metagenome. Analyses of RNA transcriptomes reveal significant upregulation in 36 genes associated with VFA transport and absorption in the ruminal epithelium of high-altitude ruminants. Our study provides novel insights into the contributions of microbiomes to adaptive evolution in mammals and sheds light on the biological control of greenhouse gas emissions from livestock enteric fermentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据