4.7 Article

Experimental and numerical investigation of thermoplastic honeycomb sandwich structures under bending loading

期刊

THIN-WALLED STRUCTURES
卷 155, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2020.106961

关键词

Thermoplastic sandwich structures; Mechanical properties; Failure mechanisms; Energy absorption; Multi-objective optimization

资金

  1. Fundamental Research Funds for the Central Universities [DUT19ZD222]
  2. Research Funds of The State Key Laboratory of Structural Analysis for Industrial Equipment [S18108]

向作者/读者索取更多资源

Sandwich structures have attracted increasing attention in engineering applications due to their lightweight effect and energy absorbing capacity. In the current work, fully-thermoplastic honeycomb sandwich structures with 100% recyclability were developed, which consisted of continuous glass fiber-reinforced polypropylene (PP/GF) face sheets, polypropylene (PP) core and assembled using thermoplastic adhesive films. The experimental tests and numerical analysis were conducted to investigate the bending behavior and energy absorption of PP-based sandwich structures. Firstly, a series of three-point bending experiments were tested and the influences of structural factors on bending behaviors were investigated. The typical deformation modes were explored and the damaged microstructure of face-sheets were observed. Finite element models of the sandwich structures were developed to capture the deformation process, and the simulation results were validated with the experimental data. Afterwards, a multi-objective optimization was performed to seek for the maximum specific energy absorption together with the minimum initial peak force simultaneously. Response surface method was adopted to construct objective response functions and used for the defined optimization problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据