4.6 Article

Denuding a Craton: Thermochronology Record of Phanerozoic Unroofing From the Pilbara Craton, Australia

期刊

TECTONICS
卷 39, 期 9, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019TC005988

关键词

craton; denudation; unroofing; thermal history; far-field stress; sedimentary

资金

  1. Australian Research Council's ITRH Project [IH130200012]
  2. University of Melbourne Early Career Researcher Grant Scheme
  3. Australian Research Council [FL160100168]
  4. AuScope program of the National Collaborative Research Infrastructure Strategy (NCRIS)

向作者/读者索取更多资源

Cratons are ancient regions of relatively stable continental fragments considered to have attained long-term tectonic and geomorphic stability. Low-temperature thermochronology data, however, suggest that some cratons have experienced discrete Phanerozoic heating and cooling episodes. We report apatite fission track, and apatite and zircon (U-Th)/He low-temperature thermochronology data from the Archean Pilbara craton and adjacent Paleoproterozoic basement, NW Australia. Inverse thermal history simulations of this spatially extensive data set reveal that the region has experienced similar to 50-70 degrees C cooling, which is interpreted as a response to the unroofing of erodible strata overlying basement. The timing of cooling onset is variable, mainly similar to 420-350 Ma in the southern and central Pilbara-eastern Hamersley Basin and similar to 350-300 Ma in the northern Pilbara, while the westernmost Pilbara-central Hamersley Basin does not record a significant Paleozoic cooling event. These differences are attributed to variations in sedimentary thickness and proximity to adjacent rift basins, which lack Archean age zircons in their Paleozoic strata. The onset of Paleozoic cooling coincides with the timing of the episodic intraplate late Ordovician-Carboniferous Alice Springs Orogeny. This orogeny is thought to have resulted from far-field plate margin stresses, which in turn caused the opening of the adjacent Canning Basin, to the north and east of the craton. We propose that basin development triggered a change of base level, resulting in denudation and the crustal cooling event reported here. Our results provide further evidence for the transmission of far-field forces to cratons over hundreds of kilometers and support the view that cratons have experienced geomorphic changes during the Phanerozoic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据