4.7 Article

Graphene oxide interlayered thin-film nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance

期刊

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2020.117153

关键词

Thin-film nanocomposite (TFN); Hollow fiber; Interfacial polymerization; Graphene oxide; Interlayer

资金

  1. Fundamental Research Funds for the Central Universities of China [201822012]
  2. Key Project Fund of Science and Technology of Shandong Province [2019GGX102040]

向作者/读者索取更多资源

In this study, a kind of thin-film nanocomposite (TFN) hollow fiber nanofiltration (NF) membranes was fabricated via incorporating graphene oxide (GO) interlayer using the interfacial polymerization (IP) reaction between piperazine (PIP) and trimesoyl chloride (TMC). The surface morphology and cross-sectional structure of the fabricated TFN hollow fiber NF membrane were extensively investigated. The effects of the PIP concentration, species of the aqueous additives, and the GO loading on the structure and performance of the hollow fiber NF membrane were also investigated in detail and the optimal preparation conditions were achieved. Fourier transform infrared spectroscopy (FTIR) confirmed the successful introduction of the GO interlayer into the composite hollow fiber NF membrane. Moreover, the incorporation of GO interlayer helped to reduce the skin thickness of the composite hollow fiber NF membrane remarkably, and thus helped to increase greatly the water permeance while maintaining a high salt rejection. Under an optimal GO loading of 20.0 mg m(-2), the TFN hollow fiber NF membrane achieved a water permeance of 80 L m(-2) h(-1) MPa-1 and a Na2SO4 rejection of 96.1% for 2000 mg L-1 aqueous Na2SO4 solution, much higher than the interlayer-free thin-film composite (TFC) membrane. Meanwhile, the TFN hollow fiber NF membrane showed an excellent selectivity of Na2SO4 over NaCl, as well as good fouling resistance and long-term stability, demonstrating the vast potential in application for the selective separation of monovalent salt and divalent salt.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据