4.6 Article

A Novel Simulated Annealing Based Strategy for Balanced UAV Task Assignment and Path Planning

期刊

SENSORS
卷 20, 期 17, 页码 -

出版社

MDPI
DOI: 10.3390/s20174769

关键词

heuristic algorithm; path planning; simulated annealing; unmanned aerial vehicle

资金

  1. National University of Defense Technology Foundation [1204053119078KY]

向作者/读者索取更多资源

The unmanned aerial vehicle (UAV) has drawn increasing attention in recent years, especially in executing tasks such as natural disaster rescue and detection, and battlefield cooperative operations. Task assignment and path planning for multiple UAVs in the above scenarios are essential for successful mission execution. But, effectively balancing tasks to better excavate the potential of UAVs remains a challenge, as well as efficiently generating feasible solutions from the current one in constrained explosive solution spaces with the increase in the scale of optimization problems. This paper proposes an efficient approach for task assignment and path planning with the objective of balancing the tasks among UAVs and achieving satisfactory temporal resolutions. To be specific, we add virtual nodes according to the number of UAVs to the original model of the vehicle routing problem (VRP), thus make it easier to form a solution suitable for heuristic algorithms. Besides, the concept of the universal distance matrix is proposed to transform the temporal constraints to spatial constraints and simplify the programming model. Then, a Swap-and-Judge Simulated Annealing (SJSA) algorithm is therefore proposed to improve the efficiency of generating feasible neighboring solutions. Extensive experimental and comparative studies on different scenarios demonstrate the efficiency of the proposed algorithm compared with the exact algorithm and meta-heuristic algorithms. The results also inspire us about the characteristics of a population-based algorithm in solving combinatorial discrete optimization problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据