4.7 Article

Using diagnostic ratios to characterize sources of polycyclic aromatic hydrocarbons in the Great Lakes atmosphere

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 761, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143240

关键词

Polycyclic aromatic hydrocarbons; Great Lakes; Atmosphere; Sources

资金

  1. United States Environmental Protection Agency's Great Lakes National Program Office [GL00E02730]

向作者/读者索取更多资源

This study characterized PAH source profiles in the Great Lakes atmosphere using nine PAH diagnostic ratios, highlighting the importance of pyrogenic sources and the significant contribution of diesel emissions to traffic-originated PAHs. Temporal analyses revealed increasing contributions from petrogenic sources and volatilization from surfaces, as well as amplified gaps in PAH emissions between diesel and gasoline engines in recent years. The study also confirmed the usefulness of DRs, especially when combined with PMF analysis, while pointing out the limitations of using multiple DRs.
The present study characterized source profiles of polycyclic aromatic hydrocarbons (PAHs) for the Great Lakes atmosphere using nine PAH diagnostic ratios (DRs). The samples were collected from six sites in the Great Lakes basin during 1996-2018 within the Integrated Atmospheric Deposition Network (IADN). In general, pyrogenic sources, including coal combustion and vehicular emissions, were the most important contributors to atmospheric profiles, in particular at the urban sites. Diesel emissions accounted for a larger portion of the traffic-originated PAHs than gasoline emissions at all sites, but this compositional pattern was less obvious at the urban sites. Temporal analyses for DRs revealed that the relative contribution of petrogenic sources and volatilization from surfaces has been increasing gradually, and that the gaps in PAH emissions between diesel- and gasoline-engines appeared to be further amplified in recent years. Coal combustion and non-pyrogenic emissions were the main PAH sources for winter and summer air, respectively, but none of the DRs responded to these changes. DRs were generally different between vapor and particle phases. Our findings shed light on spatial and temporal trends of PAH DRs and PAH source characterization in the Great Lakes basin. Additionally, this study confirmed the usefulness of DRs, especially when combined with the PMF analysis, while also highlighting the limitation of multiple DRs. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据