4.7 Article

Evaluating the dynamics of groundwater, lakebed transport, nutrient inflow and algal blooms in Upper Klamath Lake, Oregon, USA

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 765, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142768

关键词

Surface water-groundwater interaction; Phosphorus; Silica; Algae; Benthic processes

资金

  1. Bureau of Reclamation
  2. U.S. Geological Survey National Water Quality and Water Availability and Use Science Programs of the Water Mission Area

向作者/读者索取更多资源

This study examined the nutrient transport processes in lakes and the contributions of groundwater inflow and sediment release to internal nutrient loading. The results showed that groundwater inflow had a significant impact on phosphorus and silicon content in the lake, with spring being the peak period for nutrient absorption in the lake.
Transport of nutrients to lakes can occur via surface-water inflow, atmospheric deposition, groundwater (GW) inflow and benthic processes. Identifying and quantifying within-lake nutrient sources and recycling processes is challenging. Prior studies in hypereutrophic Upper Klamath Lake, Oregon, USA, indicated that similar to 60% of the early summer phosphorus (P) load to the lake was internal and hypothesized to be lakebed sediment release. Dynamic nutrient transport processes were examined to better characterize the nutrient sources. One-dimensional heat transport models calibrated to observed lakebed temperatures and a cross-sectional GW flow model provided estimates of GW-inflow rates that were greatest in spring and decreased through summer. One-dimensional solute transport models calibrated to observed lakebed pore-water dissolved silica (Si) and dissolved phosphate-phosphorus (DP) concentrations indicated that nutrients were transported from the lakebed by advection, diffusion, and enhanced mixing by benthic organisms and waves, and that DP removal occurred near the lakebed interface. Estimated water, Si, DP and total-phosphorus (TP) budgets indicated that GW contributed 21% of lake water inflow and at least 26, 20 and 16% of total Si, DP and TP inflow, respectively, when conservatively assuming background GW nutrient concentrations. However, lakebed GW(LGW) is enriched in nutrients during flow through lakebed sediment and the estimated GW contribution increased to 29 (33), 49 (67) and 43% (61%) of total Si, DP and TP inflow, respectively, if 20% (50%) of GW inflow to the lake was assumed to have LGW concentrations. Net nutrient inflow to the lake was greatest in spring and coincident with the annual diatom bloom. Inflowing dissolved nutrients appear to be assimilated by diatoms during the spring and become available for the summer Aphanizomenon flos-aquae bloom when the diatoms senesce. Thus, nutrient-enriched GW inflow and nutrient recycling by successive algal blooms must be considered when evaluating internal nutrient loading to lakes. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据