4.7 Review

Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 765, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142794

关键词

Peroxydisulfate; Peroxymonosulfate; Nonradical activation; Metal catalysts; Carbocatalysts

资金

  1. National Natural Science Foundation of China [21876209]
  2. Key Research and Development Program of the Ministry of Sciences and Technology of China [2019YFC1804002]
  3. Fundamental Research Funds for the Central Universities [C7120018, KTZ20043]
  4. South-Central University for Nationalities

向作者/读者索取更多资源

Nonradical persulfate oxidation processes have advantages such as selective oxidation of organic pollutants, various oxidation pathways, and high tolerance to water matrices. Understanding the activation mechanisms and reaction pathways of nonradical persulfate can lead to more effective applications in wastewater treatment.
Nonradical persulfate oxidation processes have emerged as a new wastewater treatment method due to production of mild nonradical oxidants, selective oxidation of organic pollutants, and higher tolerance to water matrixes compared with radical persulfate oxidation processes. Since the case of the nonradical activation of peroxydisulfate (PDS) was reported on CuO surface in 2014, nonradical persulfate oxidation processes have been extensively investigated, and much achievement has been made on realization of nonradical persulfate activation processes and understanding of intrinsic reaction mechanism. Therefore, in the review, nonradical pathways and reaction mechanisms for oxidation of various organic pollutants by PDS and peroxymonosulfate (PMS) are overviewed. Five nonradical persulfate oxidation pathways for degradation of organic pollutants are summarized, which include surface activated persulfate, catalysts-free or catalysts mediated electron transfer, O-1(2), highvalent metals, and newly derived inorganic oxidants (e.g., HOCl and HCO4-). Among them, the direct oxidation processes by persulfate, nonradical based persulfate activation by inorganic/organic molecules and in electrochemical methods is first overviewed. Moreover, nonradical based persulfate activation mechanisms by metal oxides and carbon materials are further updated. Furthermore, investigation methods of interaction between persulfate and catalyst surface, and nature of reactive species are also discussed in detail. Finally, the future research needs are proposed based on limited understanding on reaction mechanism of nonradical based persulfate activation. The review can offer a comprehensive assessment on nonradical oxidation of organic pollutants by persulfate to fill the knowledge gap and provide better guidance for future research and engineering application of persulfate. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据