4.7 Article

Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 738, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140345

关键词

Microbial fertilizer; Humic acid; Bacterial community structure; Soil enzymes; Soil physical and chemical properties

资金

  1. National Key Research and Development Program of China [2017YFD0201600]
  2. National Natural Science Foundation of China [31972313, 31571975]
  3. Beijing Innovation Consortium of Agriculture Research System

向作者/读者索取更多资源

Although fumigants can effectively control soil-borne diseases they are typically harmful to beneficial microorganisms unless methods are developed to encourage their survival after fumigation. The soil fumigant 1,3-dichloropropene (1,3-D) is widely used because of its effective management of pathogenic nematodes and weeds. After fumigation with 1,3-D, Bacillus subtilis and Trichoderma harzianum fertilizer (either singularly or together) or humic acid were added to soil that had been used to produce tomatoes under continuous production for >20 years. We evaluated changes to the soil's physicochemical properties and enzyme activity in response to these fertilizer treatments, and the effects of these changes on beneficial bacteria. Fertilizer applied after fumigation increased the content of ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium and organic matter, and it promoted an increase in pH and electrical conductivity. The activity of urease, sucrase and catalase enzymes in the soil increased after fumigation. Taxonomic identification of bacteria using genetic analysis techniques showed that fertilizer applied after fumigation increased the abundance of ilainobacteria and the relative abundance of the biological control genera Sphingomona, Pseudomonas, Bacillus and Lysobacter. The abundance of these beneficial bacteria increased significantly when B. subtilis and T. harzianum were applied together. These results showed that fertilizer applied after fumigation can increase the abundance of beneficial microorganisms in the soil within a short period of time, which improved the soil's fertility, ecological balance and potentially crop quality and yield. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据