4.7 Article

Hybrid low-carbon high-octane oxygenated gasoline based on low-octane hydrocarbon fractions

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 756, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142715

关键词

Hybrid low-carbon fuels; Bioethanol; Isopropanol, 2-methylfuran, MTBF, motor gasoline; Octane number

向作者/读者索取更多资源

Low-carbon fuel is the main trend in oil refining industry development. A novel approach for producing low-carbon high-octane oxygenated environmentally friendly motor gasoline has been proposed, leading to successful production of high-octane environmentally friendly motor gasoline, which can reduce environmental impacts and improve product quality.
Low-carbon fuel is the main trend in the development of oil refining in leading countries. Likewise, efforts continue optimizing internal combustion engines for increasing their fuel economy, and therefore exhaust emissions will be reduced. This research proposes a novel approach for producing low-carbon high-octane oxygenated environmentally friendly motor gasoline based on low-octane hydrocarbon fractions. Experimental studies of the antiknock performance for four representatives of oxygenated compounds, involving bioethanol, methyl tertiary butyl ether (MTBE), isopropanol, and 2-methylfuran with low-octane hydrocarbon fractions, as well as low-octane blends of individual hydrocarbons of surrogate fuels were carried out. Additionally, the change in antilocking performance of oxygenated compounds has been dependent on their types and group composition of the base low-octane motor fuel. The results illustrated that high-octane environmentally friendly motor gasolines RON 91 and RON 95 have been produced. Besides, the injectivity of hydrocarbons tooxygenated compounds by the ability to increase the octane rating by the research method will increase in the series: olefins < naphthenes < aromatics < paraffins, and by the motor method:naphthenes < olefins < aromatics < paraffins. Finally, environmentally friendly motor gasoline can decrease the environment impacts, reduce the overhead charges, as well as maximize the product quality. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据