4.7 Article

Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 762, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143144

关键词

Flood risk; Climate change; Urbanization; SSP scenarios; Set pair analyze; Pearl River Delta

资金

  1. National Key Research and Development Program of China [2017YFC1502704]
  2. National Natural Science Foundation of China [51879108]

向作者/读者索取更多资源

This study conducted a comprehensive assessment of future flood risk in the Pearl River Delta, showing that climate change and urbanization are expected to exacerbate flood risk in most parts of the region over the next few decades. The results suggest that reducing greenhouse gas emissions may effectively mitigate the flood risk, and flood risk management and preventative actions should be included in regional adaptation strategies.
Climate change and urbanization are converging to challenge the flood control in the Pearl River Delta (PRD) due to their adverse impacts on precipitation extremes and the urban areas environment. Previous studies have investigated temporal changes in flood risk with various single factor, few have considered the joint effects of climate change, urbanization and socio-economic development. Here, based on the representative concentration pathway (RCP) scenarios, we conducted a comprehensive assessment of future (2030-2050) flood risk over the PRD combined with a thorough investigation of climate change, urbanization and socio-economic development. Precipitation extremes were projected using the regional climate model RegCM4.6, and urbanization growth was projected based on the CA-Markov model. The economic and population development was estimated by the shared socio-economic pathways (SSPs). Flood risk mapping with different RCPs-urbanization-SSPs scenarios was developed for the PRD based on the set pair analyze theory. The results show that climate change and urbanization are expected to exacerbate flood risk inmost parts of the PRD during the next few decades, concurrently with more intense extreme precipitation events. The high flood risk areas are projected mainly in the urban regions with unfavorable terrain and dense population. The highest flood risk areas are expected to increase by 8.72% and 19.80% under RCP4.5 and RCP8.5 scenarios, respectively. Reducing greenhouse gas emissions may effectively mitigate the flood risk over the PRD. This study highlight the links between flood risk and changing environment, suggesting that flood risk management and preventative actions should be included in regional adaptation strategies. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据