4.7 Review

Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 739, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.139756

关键词

Crop yield; Pharmaceuticals and personal care products; Soil chemistry; Nanomaterials; Phytotoxicity; Climate change

资金

  1. AFRI from the USDA National Institute of Food and Agriculture [2017-69007-26309]
  2. National Science Foundation [1804255, 1808372]
  3. Direct For Mathematical & Physical Scien [1808372] Funding Source: National Science Foundation
  4. Division Of Chemistry [1808372] Funding Source: National Science Foundation
  5. Div Of Chem, Bioeng, Env, & Transp Sys
  6. Directorate For Engineering [1804255] Funding Source: National Science Foundation

向作者/读者索取更多资源

The geographical and temporal distribution of precipitation has and is continuing to change with changing climate. Shifting precipitation will likely require adaptations to irrigation strategies, and because 35% of rainfed and 60% of irrigated agriculture is within 20 km of a wastewater treatment plant, we expect that the use of treated wastewater (e.g., reclaimed wastewater) for irrigation will increase. Treated wastewater contains various organic and inorganic substances that may have beneficial (e.g., nitrate) or deleterious (e.g., salt) effects on plants, which may cause a change in global food productivity should a large change to treated wastewater irrigation occur. We reviewed literature focused on food crop growth inhibition or promotion resulting from exposure to xenobiotics, engineered nanoparticles, nitrogen, and phosphorus, metals, and salts. Xenobiotics and engineered nanoparticles, in nearly all instances, were detrimental to crop growth, but only at concentrations much greater than would be currently expected in treated wastewater. However, future changes in wastewater flow and use of these compounds and particles may result in phytotoxicity, particularly for xenobiotics, as some are present in wastewater at concentrations within approximately an order of magnitude of concentrations which caused growth inhibition.The availability of nutrients present in treated wastewater provided the greatest overall benefit, but may be surpassed by the detrimental impact of salt in scenarios where either high concentrations of salt are directly deleterious to plant development (rare) or in scenarios where soils are poorly managed, resulting in soil salt accumulation. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据