4.7 Article

Seeking the hotspots of nitrogen removal: A comparison of sediment denitrification rate and denitrifier abundance among wetland types with different hydrological conditions

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 737, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140253

关键词

Denitrifier abundance; Denitrificanon rates; Hydrological condition; Scaling analysis; Functional relationship

资金

  1. National Natural Science Foundation of China [51709255]
  2. CRSRI Open Research Program [CKWV2019769/KY]
  3. Youth Innovation Promotion Association of Chinese Academy of Sciences [2017388]

向作者/读者索取更多资源

Wetlands play a vital role in removing nitrogen (N) from aquatic environments via the denitrification process, which is regulated by multiple environmental and biological factors. Until now, the mechanisms by which environmental factors and microbial abundance regulate denitrification rates in wetlands under different hydrological conditions remain poorly understood. Here, we investigated sediment potential denitrification rate (PDR) and unamended denitrification rate (UDR), and quantified denitrifier abundance (nirS, nirK, and nosZ genes) in 36 stream river, pond, and ditch wetland sites along the Dan River, a nitrogen-rich river in central China. The result indicated that ditches had the highest denitrification rates and denitrifier abundance. Both PDR and UDR showed strong seasonality, and were observed to be negatively correlated with water velocity in streams and rivers. Moreover, denitrification rates were significantly related to denitrifier abundance and many water quality parameters and sediment properties. Interestingly, PDR and UDR were generally positively associated with N and carbon (C) availability in streams and rivers, but such correlations were not found in ponds and ditches. Using a scaling analysis, we found that environmental parameters, including Reynolds number, sediment total C ratio, and interstitial space, coupled with relative nirS gene abundance could predict the hotspots of denitrification rates in wetlands with varying hydrologic regimes. Our findings highlight that hydrological conditions, especially water velocity and hydrologic pulsing, play a nonnegligible role in determining N biogeochemical processes in wetlands. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据