4.8 Article

A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis

期刊

SCIENCE
卷 369, 期 6507, 页码 1094-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.abb6310

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER)
  2. U.S. DOE [DE-AC05-76RLO 1830]
  3. University of Colorado Cancer Center's Genomics and Microarray Shared Resource (NCI) [P30CA046934]
  4. National Science Foundation [ACI-1532235, ACI-1532236]
  5. University of Colorado Boulder
  6. Colorado State University
  7. Genomic Science Program, U.S. DOE, Office of Science, BER as part of the Plant Microbe Interfaces Scientific Focus Area
  8. DOE [DE-AC05-00OR22725]
  9. OSU Center for Applied Plant Sciences Grant
  10. Genomic Science Program, U.S. DOE, Office of Science, BER [DE-SC0019338]
  11. U.S. Department of Energy (DOE) [DE-SC0019338] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据