4.7 Review

Planar nonlinear metasurface optics and their applications

期刊

REPORTS ON PROGRESS IN PHYSICS
卷 83, 期 12, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6633/abb56e

关键词

metasurfaces; nanophotonics; 2D materials; patterned graphene; second harmonic generation

资金

  1. European Union [798916]
  2. Wuhan Science and Technology Bureau [2018010401011297]
  3. Open Project Program of Wuhan National Laboratory for Optoelectronics [2019WNLOKF005]
  4. Natural Science Foundation of Hubei Province [2019CFB598]
  5. National Natural Science Foundation of China [61605179]
  6. Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) [162301202639]
  7. Marie Curie Actions (MSCA) [798916] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Metasurfaces are artificial two-dimensional (2D) planar surfaces that consist of subwavelength 'meta-atoms' (i.e. metallic or dielectric nanostructures). They are known for their capability to achieve better and more efficient light control in comparison to their traditional optical counterparts. Abrupt and sharp changes in the electromagnetic properties can be induced by the metasurfaces rather than the conventional gradual accumulation that requires greater propagation distances. Based on this feature, planar optical components like mirrors, lenses, waveplates, isolators and even holograms with ultrasmall thicknesses have been developed. Most of the current metasurface studies have focused on tailoring the linear optical effects for applications such as cloaking, lens imaging and 3D holography. Recently, the use of metasurfaces to enhance nonlinear optical effects has attracted significant attention from the research community. Benefiting from the resulting efficient nonlinear optical processes, the fabrication of integrated all-optical nano-devices with peculiar functionalities including broadband frequency conversions and ultrafast optical switching will become achievable. Plasmonic excitation is one of the most effective approaches to increase nonlinear optical responses due to its induced strong local electromagnetic field enhancement. For instance, continuous phase control on the effective nonlinear polarizability of plasmonic metasurfaces has been demonstrated through spin-rotation light coupling. The phase of the nonlinear polarization can be continuously tuned by spatially changing the meta-atoms' orientations during second and third harmonic generation processes, while the nonlinear metasurfaces also exhibit homogeneous linear properties. In addition, an ultrahigh second-order nonlinear susceptibility of up to 10(4) pm V-1 has recently been reported by coupling the plasmonic modes of patterned metallic arrays with intersubband transition of multi-quantum-well layered substrate. In order to develop ultra-planar nonlinear plasmonic metasurfaces, 2D materials such as graphene and transition metal dichalcogenides (TMDCs) have been extensively studied based on their unique nonlinear optical properties. The third-order nonlinear coefficient of graphene is five times that of gold substrate, while TMDC materials also exhibit a strong second-order magnetic susceptibility. In this review, we first focus on the main principles of planar nonlinear plasmonics based on metasurfaces and 2D nonlinear materials. The advantages and challenges of incorporating 2D nonlinear materials into metasurfaces are discussed, followed by their potential applications including orbital angular momentum manipulating and quantum optics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据