4.7 Article

Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data

期刊

RENEWABLE ENERGY
卷 157, 期 -, 页码 214-231

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.04.133

关键词

Short term forecasting; Global solar irradiance; Evolutionary ANN; Multi-model framework; Climatic zoning; Machine learning models

向作者/读者索取更多资源

Accurate forecasting of solar irradiance is a key issue for planning and management of renewable solar energy production technologies. The present paper aims to propose new machine learning forecasting models based on optimized ANNs in order to accurately predict solar irradiance. For this purpose, an evolutionary framework is suggested to generate multiple models for different time horizons up to 6 h ahead by the evolution of the forecasting history and ANN architecture. A dataset of 28 Moroccan cities is used in our experiments in order to explore the performances of the proposed models against different climatic conditions. The proposed framework is then evaluated through a zoning scenario giving the ability to our models to accurately forecast solar irradiance in sites where no such data is available. Two other scenarios are used to assess and compare the resulting performances. For all studied scenarios obtained results show good generalization abilities with NRMSE varying from 7.59% to 12.49% and NMAE from 4.41% to 8.12% as best performances for solar irradiance forecasting from 1 to 6 h ahead respectively. A comparative study is then conducted with three other models (smart persistence, regression trees and random forest), showing better performances of our proposed HAEANN models. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据