4.7 Article

Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)

期刊

REMOTE SENSING OF ENVIRONMENT
卷 247, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2020.111899

关键词

SAR images; Landslide; Offset tracking; Adaptive estimation window; Deformation monitoring; Failure mode deduction

资金

  1. National Key Research and Development Program of China [2017YFB0502700]
  2. National Natural Science Funds, China [61901444, 61901443]
  3. National Science Fund for Distinguished Young Scholars [61825106]
  4. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources

向作者/读者索取更多资源

Synthetic aperture radar (SAR) remote sensing is a potential technique for long-term monitoring of landslideprone areas. Pixel offset tracking methods work well for fast-moving landslides (more than tens of cm/yr). However, existing methods may present some limitations, such as (i) a high dependence of estimation window design on experience, (ii) a tradeoff between the accuracy of single points and the overall efficiency, and (iii) a low confidence in the results caused by heterogeneous in-window samples. In this paper, an improved offset tracking method is proposed to address these problems. First, the workflow is optimized by a preseparation step added before offset estimation to distinguish between feature matching and speckle pattern matching. The optimized workflow is more efficient for natural scenes containing both feature and non-saliency regions. Second, an improved algorithm called adaptive incoherence speckle offset tracking based on homogeneous samples (AISOT-HS) is proposed for non-saliency regions. Its two key points are (i) adaptive design of the optimal estimation windows by introducing a coherence map as a guide and (ii) offset estimation without heterogeneous samples. We apply the proposed method to study the evolution of the 2018 Jinsha River landslide (Tibet, China) using SAR data from the Gaofen 3 (GF-3) satellite and the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) system onboard the Advanced Land Observing Satellite (ALOS) satellite. Compared with the traditional method, the proposed method improves the efficiency and reduces the uncertainty. We also analyze the spatiotemporal displacement pattern of this landslide, which shows that the Jinsha River landslide was most likely a thrust load-caused landslide. This study demonstrates the role of SAR remote sensing in global landslide monitoring, especially where ground truth data are scarce.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据