4.7 Article

Sun-induced fluorescence heterogeneity as a measure of functional diversity

期刊

REMOTE SENSING OF ENVIRONMENT
卷 247, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2020.111934

关键词

Biodiversity; Functional diversity; Far-red sun-induced chlorophyll fluorescence; Forest ecosystems; Remote sensing; Imaging spectroscopy; HyPlant

资金

  1. European Space Agency (ESA) [400011267/14/NL/BJ/lf, 4000107143/12/NL/FF/lf]
  2. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [721995]
  3. ESA Living Planet Fellowship [4000125442/18/I-NS]

向作者/读者索取更多资源

Plant functional diversity, defined as the range of plant chemical, physiological and structural properties within plants, is a key component of biodiversity which controls the ecosystem functioning and stability. Monitoring its variations across space and over time is critical in ecological studies. So far, several reflectance-based metrics have been tested to achieve this objective, yielding different degrees of success. Our work aimed at exploring the potential of a novel metric based on far-red sun-induced chlorophyll fluorescence (F-760) to map the functional diversity of terrestrial ecosystems. This was achieved exploiting high-resolution images collected over a mixed forest ecosystem with the HyPlant sensor, deployed as an airborne demonstrator of the forthcoming ESA-FLEX satellite. A reference functional diversity map was obtained applying the Rao's Q entropy metric on principal components calculated on key plant functional trait maps retrieved from the hyperspectral reflectance cube. Based on the spectral variation hypothesis, which states that the biodiversity signal is encoded in the spectral heterogeneity, two moving window-based approaches were tested to estimate the functional diversity from continuous spectral data: i) the Rao's Q entropy metric calculated on the normalized difference vegetation index (NDVI) and ii) the coefficient of variation (CV) calculated on hyperspectral reflectance. Finally, a third moving window approach was used to estimate the functional diversity based on F-760 heterogeneity quantified through the calculation of the Rao's Q entropy metric. Results showed a strong underestimation of the functional diversity using the Rao's Q index based on NDVI and the CV of reflectance. In both cases, a weak correlation was found against the reference functional diversity map (r(2) = 0.05, p < .001 and r(2) = 0.04, p < .001, respectively). Conversely, the Rao's Q index calculated on F-760 revealed similar patterns as the ones observed in the reference map and a better correlation (r(2) = 0.5, p < .001). This corroborates the potential of far-red F for assessing the functional diversity of terrestrial ecosystems, opening unprecedented perspectives for biodiversity monitoring across different spatial and temporal scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据