4.7 Article

Swimming kinematics and hydrodynamics of barnacle larvae throughout development

出版社

ROYAL SOC
DOI: 10.1098/rspb.2020.1360

关键词

nauplius; cyprid; flow structure; high-speed imaging; metamorphosis

资金

  1. Ministry of Science and Technology, Taiwan [106-2923-B-001-002-MY3]
  2. Academia Sinica Senior Investigator Award [AS-IA-105-L03]
  3. Croucher Foundation
  4. TIGP PhD Fellowship

向作者/读者索取更多资源

Changes in size strongly influence organisms' ecological performances. For aquatic organisms, they can transition from viscosity- to inertia-dominated fluid regimes as they grow. Such transitions are often associated with changes in morphology, swimming speed and kinematics. Barnacles do not fit into this norm as they have two morphologically distinct planktonic larval phases that swim differently but are of comparable sizes and operate in the same fluid regime (Reynolds number 10(0)-10(1)). We quantified the hydrodynamics of the rocky intertidal stalked barnacleCapitulum mitellafrom the nauplius II to cyprid stage and examined how kinematics and size increases affect its swimming performance. Cyprids beat their appendages in a metachronal wave to swim faster, more smoothly, and with less backwards slip per beat cycle than did all naupliar stages. Micro-particle image velocimetry showed that cyprids generated trailing viscous vortex rings that pushed water backwards for propulsion, contrary to the nauplii's forward suction current for particle capture. Our observations highlight that zooplankton swimming performance can shift via morphological and kinematic modifications without a significant size increase. The divergence in ecological functions through ontogeny in barnacles and the removal of feeding requirement likely contributed to the evolution of the specialized, taxonomically unique cyprid phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据