4.7 Review

Genome size evolution: towards new model systems for old questions

出版社

ROYAL SOC
DOI: 10.1098/rspb.2020.1441

关键词

genomics; next-generation sequencing; long-read sequencing; experimental evolution

资金

  1. SciLifeLab Uppsala

向作者/读者索取更多资源

Genome size (GS) variation is a fundamental biological characteristic; however, its evolutionary causes and consequences are the topic of ongoing debate. Whether GS is a neutral trait or one subject to selective pressures, and how strong these selective pressures are, may remain open questions. Fundamentally, the genomic sequences responsible for this variation directly impact the potential evolutionary outcomes and, equally, are the targets of different evolutionary pressures. For example, duplications and deletions of genic regions (large or small) can have immediate and drastic phenotypic effects, while an expansion or contraction of non-coding DNA is less likely to cause catastrophic phenotypic effects. However, in the long term, the accumulation or deletion of ncDNA is likely to have larger effects. Modern sequencing technologies are allowing for the dissection of these proximate causes, but a combination of these new technologies with more traditional evolutionary experiments and approaches could revolutionize this debate and potentially resolve many of these arguments. Here, I discuss an ambitious way forward for GS research, putting it in context of historical debates, theories and sometimes contradictory evidence, and highlighting the promise of combining new sequencing technologies and analytical developments with more traditional experimental evolution approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据