4.6 Article

An improved detailed chemical kinetic model for C3-C4 linear and iso-alcohols and their blends with gasoline at engine-relevant conditions

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 38, 期 1, 页码 415-423

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2020.07.023

关键词

Propanol; Butanol; Chemical kinetics; Ignition delay time; Fuel blend combustion

资金

  1. U.S. Department of Energy (DOE) [DE-AC52-07NA27344, DE-AC02-06CH11357]
  2. DOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices

向作者/读者索取更多资源

In this study, an improved kinetic model was developed based on theoretical calculations to enhance understanding of ignition and combustion behavior of C3-C4 alcohols and their blends with gasoline under engine-relevant conditions. The model demonstrated high accuracy in predicting ignition delay times and reactivity variations, highlighting its potential for application in boosted spark-ignition engines.
Propanol and butanol isomers have received significant research attention as promising fuel additives or neat biofuels. Robust chemical kinetic models are needed that can provide accurate and efficient predictions of combustion performance across a wide range of engine relevant conditions. This study seeks to improve the understanding of ignition and combustion behavior of pure C3-C4 linear and iso-alcohols, and their blends with gasoline at engine-relevant conditions. In this work, a kinetic model with improved thermochemistry and reaction kinetics was developed based on recent theoretical calculations of H-atom abstraction and peroxy radical reaction rates. Kinetic model validations are reported, and the current model reproduces the ignition delay times of the C3 and C4 alcohols well. Variations in reactivity over a wide range of temperatures and other operating conditions are also well predicted by the current model. Recent ignition delay time measurements from a rapid compression machine of neat iso-propanol and iso-butanol [Cheng et al., Proc. Combust Inst. (2020)] and blends with a research grade gasoline [Goldsborough et al., Proc. Combust Inst. (2020)] at elevated pressure (20-40 bar) and intermediate temperatures (780-950 K) were used to demonstrate the accuracy of the current kinetic model at conditions relevant to boosted spark-ignition engines. The effects of alcohol blending with gasoline on the autoignition behavior are discussed. The current model captures the suppression of reactivity in the low-temperature and negative-temperature-coefficient (NTC) region when either isopropanol and isobutanol are added to a research grade gasoline. Sensitivity and reaction flux analysis were performed to provide insights into the relevant fuel chemistry of the C3-C4 alcohols. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据