4.7 Article

Characterization of kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite prepared by latex blending method: Dynamic mechanic properties and mechanism

期刊

POLYMER TESTING
卷 89, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymertesting.2020.106600

关键词

Kaolinite; ESBR; Latex blending; Dynamic mechanical; Mechanism

资金

  1. National Natural Science Foundation Project of China [11562015]
  2. Natural Science Foundation of Inner Mongolia [2018MS05061]
  3. Talent Foundation of Inner Mongolia

向作者/读者索取更多资源

The latex blending method was chosen to prepare Kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite to improve the interaction between filler particles and rubber matrix chains. The influences of kaolinite particles size, filler contents, and flocculants types on dynamic mechanical properties and the relative reinforcement mechanism of the prepared composite were systematic investigated and proposed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the kaolinite particles were finely dispersed into the rubber matrix and arranged in parallel orientation. The prepared nanocomposites by latex blending exhibited improved crosslinking characteristic and dynamic mechanical parameters. The KA1 (SO4)(2) flocculant presented obvious modification in dynamic properties and crosslinking characteristic. Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/ESBR nanocomposites. The dynamic reinforcement mechanism of kaolinite can be explained by filler network including a certain thickness of rubber shell on the surface of kaolinite lamellar structure and the aggregations network between kaolinite particles The optimum way to balance the dynamic properties of rubber nanocomposites at different temperatures is to reduce the surface difference between kaolinite and rubber matrix and the degree of filler-filler networking on the basis of kaolinite with nanoscale (nanometer effect).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据