4.7 Article

In Situ Evaluation of Calcium Phosphate Nucleation Kinetics and Pathways during Intra- and Extrafibrillar Mineralization of Collagen Matrices

期刊

CRYSTAL GROWTH & DESIGN
卷 16, 期 9, 页码 5359-5366

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.6b00864

关键词

-

资金

  1. Y.S.J.'s faculty startup fund at Washington University
  2. National Science Foundation [DMR-1608545, DMR-1608554]
  3. National Institutes of Health [U01 EB016422]
  4. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1608545] Funding Source: National Science Foundation
  7. Division Of Materials Research
  8. Direct For Mathematical & Physical Scien [1608554] Funding Source: National Science Foundation

向作者/读者索取更多资源

We revealed that nucleation sites within collagen fibrils determined pathways for calcium phosphate (CaP) nucleation and its transformation, from amorphous species to crystalline plates, during the biomineralization process. Using in situ small-angle X-ray scattering (SAXS), we examined the nucleation and growth of CaP within collagen matrices and elucidated how a nucleation inhibitor, polyaspartic acid (pAsp), governs mineralization kinetics and pathways at multiple length scales. Mineralization without pAsp led initially to spherical aggregates of CaP in the entire extrafibrillar spaces. With time, the spherical aggregates transformed into plates at the outermost surface of the collagen matrix, preventing intrafibrillar mineralization inside. However, mineralization with pAsp led directly to the formation of intrafibrillar CaP plates with a spatial distribution gradient through the depth of the matrix. The results illuminate mineral nucleation kinetics and real-time nanoparticle distributions within organic matrices in solutions containing body fluid components. Because the macroscale mechanical properties of collagen matrices depend on their mineral content, phase, and arrangement at the nanoscale, this study contributes to better design and fabrication of biomaterials for regenerative medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据