4.7 Article

Effects of exogenous abscisic acid on oil content, fatty acid composition, biodiesel properties and lipid components in developing Siberian apricot (Prunus sibirica) seeds

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 154, 期 -, 页码 260-267

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2020.06.020

关键词

Prunus sibirica; Abscisic acid; Fatty acids; Biodiesel fuel properties; Lipidomics

资金

  1. National Natural Science Foundation of China [31700586]
  2. Hainan University (KYQD) [(ZR) 1701]

向作者/读者索取更多资源

Previous studies in Siberian apricot (Prunus sibirica) seed kernel (SASK) have suggested the involvement of abscisic acid (ABA) signaling pathway in oil accumulation. However, there are few reports on the effects of ABA on the metabolism of fatty acids (FA) in seed development. Here, we first evaluated the response of developing SASK to ABA treatment, with a focus on oil content, FA composition, biodiesel properties, lipid compounds and gene expressions. Compared with control samples, the application of exogenous ABA increased the total oil content by 6.55% in mature SASK. The C18:1 content markedly increased in ABA treatment, and conversely C16:0 decreased. Exogenous ABA also improved the biodiesel properties of SASK oil, making it better suited to the specifications of biodiesel standards. Furthermore, the molecular species of phosphatidylcholine (PC), phosphatidic acid (PA), diacylglycerol (DAG) and triacylglycerol (TAG) were detected using lipidomics analysis. The 18:1/18:1 was the main component in PA, PC and DAG, while the main components of 18:1/18:1/18:2, 18:1/18:1/18:3, 18:2/18:2/18:2 and 18:1/18:1/18:1 in TAG. Most lipid species gradually increased with SASK maturity. In addition, the relative contents of TAG-18:1/18:1/18:2 and TAG-18:1/18:1/18:1 in developing SASK increased with the application of exogenous ABA. We also detected elevated gene expression of key genes involved in ABA chemical pathway, which likely affected FA biosynthesis and accumulation. Our results provide insight into the effects of ABA on the oil accumulation in developing SASK, which has direct applications to improving the quality of SASK-derived biodiesel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据