4.7 Article

Study of regular reflection shock waves using a mesoscopic kinetic approach: Curvature pattern and effects of viscosity

期刊

PHYSICS OF FLUIDS
卷 32, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0024801

关键词

-

资金

  1. National Natural Science Foundation of China [11902281, 91941103]
  2. China Postdoctoral Science Foundation [2016M602073]

向作者/读者索取更多资源

The physical characteristics inside shock waves with nonequilibrium molecular motion are difficult to describe using conventional macroscopic methods. In this paper, nonequilibrium hydrodynamic and thermodynamic effects caused by the strong nonequilibrium molecular velocity distribution at a shock wave are studied using a mesoscopic kinetic approach. This approach is based on a lattice Boltzmann method and a kinetic nonequilibrium method. The former adopts a compressible double-distribution-function model with separated density and total energy distribution functions. The latter represents the nonequilibrium effects through nonequilibrium kinetic moments based on the nonequilibrium molecular velocity distribution. The nonequilibrium effects in the steady state and the process of the formation of a regular reflection shock wave are presented. Nonequilibrium effects inside the shock wave are further investigated. First, the curvature pattern during the formation of a regular reflection shock wave is addressed. The curvature characteristic leads to distinct features of nonequilibrium effects compared with the linear pattern. A vector-based approach for visualizing nonequilibrium effects is proposed to study the curvature pattern. Second, the influence of viscosity on nonequilibrium effects, which is related to the average collision time among molecules at the shock wave, is explored. The results obtained in this paper provide mesoscopic physical insight into the flow mechanisms occurring in shock waves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据