4.7 Article

Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data

期刊

PHYSICS OF FLUIDS
卷 32, 期 9, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0020721

关键词

-

资金

  1. JSPS KAKENHI [18H03758]

向作者/读者索取更多资源

We propose a customized convolutional neural network based autoencoder called a hierarchical autoencoder, which allows us to extract nonlinear autoencoder modes of flow fields while preserving the contribution order of the latent vectors. As preliminary tests, the proposed method is first applied to a cylinder wake at Re-D = 100 and its transient process. It is found that the proposed method can extract the features of these laminar flow fields as the latent vectors while keeping the order of their energy content. The present hierarchical autoencoder is further assessed with a two-dimensional y-z cross-sectional velocity field of turbulent channel flow at Re-tau = 180 in order to examine its applicability to turbulent flows. It is demonstrated that the turbulent flow field can be efficiently mapped into the latent space by utilizing the hierarchical model with a concept of an ordered autoencoder mode family. The present results suggest that the proposed concept can be extended to meet various demands in fluid dynamics including reduced order modeling and its combination with linear theory-based methods by using its ability to arrange the order of the extracted nonlinear modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据