4.8 Article

Neutron Capture on the s-Process Branching Point 171Tm via Time-of-Flight and Activation

期刊

PHYSICAL REVIEW LETTERS
卷 125, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.125.142701

关键词

-

资金

  1. University of Seville via the V PPIT-US programme
  2. Spanish Ministerio de Economia y Competitividad [FPA2013-45083-13, FPA2014-53290-C2-2-P, FPA2016-77689-C2-1-R]
  3. EC FP7 project NeutAndalus [334315]
  4. EC FP7 project CHANDA [605203]
  5. n_TOF Collaboration
  6. Pazy Foundation (Israel)
  7. Israel Science Foundation [1387/15]
  8. Science and Technology Facilities Council UK [ST/M006085/1]
  9. European Research Council ERC-2015-STG [677497]
  10. STFC [ST/P004423/1, ST/N00244X/1, ST/M006085/1, ST/L005794/1] Funding Source: UKRI
  11. European Research Council (ERC) [677497] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable Tm-171 (t(1/2) = 1.92 yr) is part of the branching around mass A similar to 170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of Tm-171 at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (n_TOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time -of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384 (40) mb, with which the estimation from the n_TOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KAlloNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A similar to 170 branching, namely, the Yb-171 abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据