4.6 Article

Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction

期刊

OPTICS EXPRESS
卷 28, 期 19, 页码 27774-27784

出版社

Optica Publishing Group
DOI: 10.1364/OE.402326

关键词

-

类别

资金

  1. National Natural Science Foundation of China [61971435]
  2. Shanxi Province Science and Technology Innovation team Foundation of Shanxi Province [2020JQ-471]
  3. National Key Research and Development Program of China [2017YFA0700201]

向作者/读者索取更多资源

In this paper, an optically transparent coding metasurface structure based on indium tin oxide (ITO) thin films with simultaneously low infrared (IR) emissivity and microwave scattering reduction is proposed. To this end, two ITO coding elements which can reflect 0 degrees and 180 degrees phase responses are firstly designed. Based on these two elements, four coding sequences with different scattering patterns are designed. Three of them can realize anomalous reflections and the fourth can realize random diffusion of normal incident electromagnetic (EM) waves. A prototype of the random diffusion coding metasurface was fabricated and measured. The experimental results show that for normal incident EM waves, at least 10dB backward scattering reduction from 3.8GHz to 6.8GHz can be achieved, and the structure is polarization insensitive. The averaged transmittance of visible light through the coding metasurface reaches up to 72.2%. In addition, due to the high occupation ratio of ITO on the outside of the coding metasurface, a low IR emissivity of about 0.275 is obtained. Good consistency between the experiment and simulation results convincingly verifies the coding metasurface. Due to its multispectral compatibility, the proposed coding metasurface may find potential applications in multi-spectral stealth, camouflage, etc. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据