4.6 Article

Hydrothermal synthesis of rGO-Bi2WO6 heterostructure for the photocatalytic degradation of levofloxacin

期刊

OPTICAL MATERIALS
卷 107, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.optmat.2020.110126

关键词

Levofloxacin; rGO-Bi2WO6; Photocatalytic; Degradation; Visible light

资金

  1. CSIR [09/135(0778)/2017-EMR-I]
  2. RUSA grant of Panjab University, Chandigarh
  3. TEQIP-III grant

向作者/读者索取更多资源

Herein, we present an overt hydrothermal approach for the synthesis of rGO-Bi2WO6 heterostructures based catalyst, which were later probed with XRD, FTIR, PL, BET surface area, XPS, FE-SEM and HR-TEM for their structural, optical and morphological characteristics. The as prepared material was explored to degrade levofloxacin, an antibiotic, using visible light at room temperature. The rGO-Bi 2 WO 6 photocatalyst under optimized parameters exhibited 74.3% degradation efficiency within 120 min. The impact of optimal parameters i.e. levofloxacin concentration, pH and photocatalyst loading was also considered. Notably, rGO-Bi2WO6 heterostructure manifested excellent photocatalytic performance in comparison to pure Bi2WO6 nanoplates for levofloxacin degradation under the same process conditions. This enhancement could be owed to reduction in recombination rates of photoexcited charge carriers in rGO-Bi2WO6 owing to the introduction of graphene, which served as an excellent charge transporter. The mechanistic study of degradation of levofloxacin proposed upon the radical trapping investigations revealed the significant contribution of electrons and holes in the photocatalytic process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据