4.8 Article

Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo

期刊

NUCLEIC ACIDS RESEARCH
卷 48, 期 17, 页码 9694-9709

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkaa718

关键词

-

资金

  1. National Institutes of Health/National Cancer Institute [R01CA226852, R01CA158073, R01CA215067, P01CA174653]
  2. Canadian Institute of Health Research [BMA342854]
  3. NIH/NCI Cancer Center Support Grant [P30CA013696]

向作者/读者索取更多资源

DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD(+) interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD(+) interacting residues involved in the PARP1 exchange.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据