4.8 Article

The maternal microbiome modulates fetal neurodevelopment in mice

期刊

NATURE
卷 586, 期 7828, 页码 281-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-020-2745-3

关键词

-

资金

  1. Packard Fellowship in Science and Engineering
  2. Klingenstein-Simons Award
  3. UPLIFT: UCLA Postdocs' Longitudinal Investment in Faculty Award [K12 GM106996]
  4. NICHD Pathway to Independence Award [K99 HD101680]
  5. Ruth L. Kirschstein National Research Service Awards [F31 HD101270, F30 DE025172]
  6. NSF Graduate Research Fellowship
  7. New York Stem Cell Foundation

向作者/读者索取更多资源

'Dysbiosis' of the maternal gut microbiome, in response to challenges such as infection(1), altered diet(2)and stress(3)during pregnancy, has been increasingly associated with abnormalities in brain function and behaviour of the offspring(4). However, it is unclear whether the maternal gut microbiome influences neurodevelopment during critical prenatal periods and in the absence of environmental challenges. Here we investigate how depletion and selective reconstitution of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibited reduced brain expression of genes related to axonogenesis, deficient thalamocortical axons and impaired outgrowth of thalamic axons in response to cell-extrinsic factors. Gnotobiotic colonization of microbiome-depleted dams with a limited consortium of bacteria prevented abnormalities in fetal brain gene expression and thalamocortical axonogenesis. Metabolomic profiling revealed that the maternal microbiome regulates numerous small molecules in the maternal serum and the brains of fetal offspring. Select microbiota-dependent metabolites promoted axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with these metabolites abrogated deficiencies in fetal thalamocortical axons. Manipulation of the maternal microbiome and microbial metabolites during pregnancy yielded adult offspring with altered tactile sensitivity in two aversive somatosensory behavioural tasks, but no overt differences in many other sensorimotor behaviours. Together, our findings show that the maternal gut microbiome promotes fetal thalamocortical axonogenesis, probably through signalling by microbially modulated metabolites to neurons in the developing brain. Small molecules that arise from the maternal gut microbiome in pregnant dams promote fetal thalamocortical axonogenesis in their offspring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据