4.8 Article

Impact of ionizing radiation on superconducting qubit coherence

期刊

NATURE
卷 584, 期 7822, 页码 551-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-020-2619-8

关键词

-

向作者/读者索取更多资源

Ionizing radiation from environmental radioactivity and cosmic rays increases the density of broken Cooper pairs in superconducting qubits, reducing their coherence times, but can be partially mitigated by lead shielding. Technologies that rely on quantum bits (qubits) require long coherence times and high-fidelity operations(1). Superconducting qubits are one of the leading platforms for achieving these objectives(2,3). However, the coherence of superconducting qubits is affected by the breaking of Cooper pairs of electrons(4-6). The experimentally observed density of the broken Cooper pairs, referred to as quasiparticles, is orders of magnitude higher than the value predicted at equilibrium by the Bardeen-Cooper-Schrieffer theory of superconductivity(7-9). Previous work(10-12)has shown that infrared photons considerably increase the quasiparticle density, yet even in the best-isolated systems, it remains much higher(10)than expected, suggesting that another generation mechanism exists(13). Here we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference. The effect of ionizing radiation leads to an elevated quasiparticle density, which we predict would ultimately limit the coherence times of superconducting qubits of the type measured here to milliseconds. We further demonstrate that radiation shielding reduces the flux of ionizing radiation and thereby increases the energy-relaxation time. Albeit a small effect for today's qubits, reducing or mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据