4.7 Article

Massively parallel Bayesian inference for transient gravitational-wave astronomy

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/staa2483

关键词

gravitational waves; methods: data analysis

资金

  1. Australian Research Council (ARC) Centre of Excellence [CE170100004]
  2. U.S. National Science Foundation
  3. French Centre National de Recherche Scientifique (CNRS)
  4. Italian Istituto Nazionale della Fisica Nucleare (INFN)
  5. Dutch Nikhef
  6. Polish institute
  7. Hungarian institute

向作者/读者索取更多资源

Understanding the properties of transient gravitational waves (GWs) and their sources is of broad interest in physics and astronomy. Bayesian inference is the standard framework for astrophysical measurement in transient GW astronomy. Usually, stochastic sampling algorithms are used to estimate posterior probability distributions over the parameter spaces of models describing experimental data. The most physically accurate models typically come with a large computational overhead which can render data analsis extremely time consuming, or possibly even prohibitive. In some cases highly specialized optimizations can mitigate these issues, though they can be difficult to implement, as well as to generalize to arbitrary models of the data. Here, we investigate an accurate, flexible, and scalable method for astrophysical inference: parallelized nested sampling. The reduction in the wall-time of inference scales almost linearly with the number of parallel processes running on a high-performance computing cluster. By utilizing a pool of several hundreds or thousands of CPUs in a high-performance cluster, the large wall times of many astrophysical inferences can be alleviated while simultaneously ensuring that any GW signal model can be used out of the box', i.e. without additional optimization or approximation. Our method will be useful to both the LIGO-Virgo-KAGRA collaborations and the wider scientific community performing astrophysical analyses on GWs. An implementation is available in the open source gravitational-wave inference library pBilby (parallel bilby).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据