4.6 Article

Prenatal Stress Leads to the Altered Maturation of Corticostriatal Synaptic Plasticity and Related Behavioral Impairments Through Epigenetic Modifications of Dopamine D2 Receptor in Mice

期刊

MOLECULAR NEUROBIOLOGY
卷 58, 期 1, 页码 317-328

出版社

SPRINGER
DOI: 10.1007/s12035-020-02127-6

关键词

PRS; Striatum; Synaptic plasticity; Behavioral habituation; DNA methylation; Dopamine

资金

  1. National Natural Science Foundation of China [81471385]
  2. Natural Science Foundation of Jiangsu Province of China [BK20151552]

向作者/读者索取更多资源

Prenatal stress has a long-term adverse effect on motor behaviors and corticostriatal synaptic plasticity. Epigenetic DNA alterations may play a key role in mediating these effects, with changes in dopamine signaling and DNA methylation contributing to alterations in synaptic plasticity and behavioral development.
Prenatal stress (PRS) had a long-term adverse effect on motor behaviors. Corticostriatal synaptic plasticity, a cellular basis for motor controlling, has been proven to participate in the pathogenesis of many behavior disorders. Based on the reports about the involvement of epigenetic DNA alterations in PRS-induced long-term effects, this research investigated the influence of PRS on the development and maturation of corticostriatal synaptic plasticity and related behaviors and explored the underlying epigenetic mechanism. Subjects were male offspring of dams that were exposed to stress three times per day from the 10th day of pregnancy until delivery. The development and maturation of plasticity at corticostriatal synapses, dopamine signaling, behavioral habituation, and DNA methylation were examined and analyzed. Control mice expressed long-term potentiation (LTP) at corticostriatal synapses during postnatal days (PD) 12-14 and produced long-term depression (LTD) during PD 20-60. However, PRS mice exhibited sustained LTP during PD 12-60. The treatment with dopamine 2 receptor (D2R) agonist quinpirole recovered striatal LTD and improved the impaired behavioral habituation in PD 45 adult PRS mice. Additionally, adult PRS mice showed reduced D2R, excess DNA methyltransferase 1 (DNMT1), increased binding of DNMT1 to D2R promoter, and hypermethylation at D2R promoter in the striatum. The DNMT1 inhibitor 5-aza-deoxycytidine restored striatal synaptic plasticity and improved behavioral habituation in adult PRS mice via D2R-mediated dopamine signaling. DNMT1-associated D2R hypermethylation is responsible for altering the maturation of plasticity at corticostriatal synapses and impairing the behavioral habituation in PRS mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据