4.5 Article

Model for Inclusion Precipitation Kinetics During Solidification of Steel Applications in MnS and TiN Inclusions

出版社

SPRINGER
DOI: 10.1007/s11663-020-01955-0

关键词

-

资金

  1. University of Oulu including Oulu University Hospital

向作者/读者索取更多资源

A simulation model for inclusion precipitation kinetics during solidification of steel was proposed in this work. With the aim to calculate the inclusion size distribution during solidification of steel, the microsegregation calculation combined with the Kampmann-Wagner numerical (KWN) model for nucleation and growth of inclusion was incorporated into the present simulation model for calculating the evolution of inclusion size distribution during solidification of steel. The inclusion agglomeration due to Brownian collisions was also taken into account. The present simulation model was first applied in simulating precipitation of MnS during steel solidification and validated by the experimental data available in the literature. The effects of cooling rates and sulfur concentrations on the precipitation of MnS were investigated by the model calculations. Then, the present simulation model was applied in simulating the precipitation of TiN inclusions during steel solidification. The calculated mean size was found to be in good agreement with data available in the literature. Finally, the model was employed for studying the effects of interfacial tension between TiN and steel due to sulfur concentration change and cooling rates on the inclusion precipitation kinetics. It was found that interfacial tension between TiN and steel has a crucial influence on the precipitation of TiN. With an increase of the cooling rate, the size distribution of TiN transforms from the lognormal distribution to the bimodal distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据