4.7 Article

Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning

期刊

MEASUREMENT
卷 173, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2020.108582

关键词

Tool condition monitoring; Sensor fusion; Cutting forces; Acoustic emission; Vibration; Temperature; Current

资金

  1. Selcuk University Faculty Academic Staff Training Program Coordination Unit [2014-OYP-080]

向作者/读者索取更多资源

Utilizing five different sensors for data collection on a lathe, the study measured tool wear and investigated the successes of sensors in detecting wear and breakage through graphical analysis. Results show that temperature and acoustic emission signals are highly accurate in predicting wear, and sensor fusion-based turning provides more reliable, robust, and consistent machining.
Monitoring of the cutting area with different type of sensors requires confirmation for composing sensor fusion to obtain longer tool life and high-quality product. The complex structure of machining and interaction between variables affect the influence of parameters on quality indicators. Using multiple sensors provide comparison of information acquired from different resources and make easier to decide about tool and workpiece condition. In this experimental research for the first time, five different sensors were adopted to a lathe for collecting data to measure the capability of each sensor in reflecting the tool wear. Cutting forces, vibration, acoustic emission, temperature and current measurements were carried out during turning of AISI 5140 with coated carbide tools. Considering the graphical investigation, the successes of sensors on detection of progressive flank wear and tool breakage were investigated. Besides, the effects of cutting parameters on measured variables were interpreted considering graphs. According to results, temperature and acoustic emission signals seem to be effective about 74% for flank wear. In addition, fuzzy logic based prediction of flank wear was performed with the assistance of temperature and acoustic emission sensors with high accuracy which demonstrates their availability for sensor fusion. Tool breakage occurs instantly which can prevent with the assistance of sensor signals and tangential and feed cutting forces, acoustic emission and vibration signals seem as reliable indicators for approaching major breakage. Sensor fusion based turning provides confirmed information which enables more reliable, robust and consistent machining.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据