4.5 Article

Paleocirculation and foraminiferal assemblages of the Cenomanian-Turonian Bridge Creek Limestone bedding couplets: Productivity vs. dilution during OAE2

期刊

CRETACEOUS RESEARCH
卷 60, 期 -, 页码 52-77

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cretres.2015.11.009

关键词

Dilution; Productivity; OAE 2; Foraminifera; Paleoceanography; WIS

资金

  1. General People's Committee of Libya

向作者/读者索取更多资源

The limestone marlstone (or limestone calcareous shale) bedding couplets of the lower Bridge Creek Member of the Greenhorn Formation coincide with Oceanic Anoxic Event 2 and the Cenomanian -Turonian stage boundary at 93.9 Ma, and are characterized by fluctuations in microfossil and macro fossil biofacies, and organic carbon. Since G.K. Gilbert (1895), these strongly alternating lithofacies have been attributed to climate and/or productivity cycles. Heretofore, only the calcareous shale and marl-stone parts of the Bridge Creek bedding couplets have been quantitatively analyzed for planktic and benthic foraminiferal assemblages. In this study, foraminiferal assemblages extracted from the hard limestone beds are comparable with the muddier lithologies thereby allowing a quantitative evaluation of the foraminiferal response to cyclically changing conditions in the U.S. Western Interior Sea (WIS) that resulted in the deposition of these lithologic couplets. The results reveal a modest cyclical response of foraminiferal assemblages extracted from limestone beds compared to adjacent calcareous shale or marlstone. These include the absence of planktic planispiral morphotypes (Globigerinelloides), increase in the proportion of planktic biserial and triserial morphotypes (Heterohelix and Guembelitria, respectively), and an increase in the proportion of benthics relative to total foraminifera (decrease in percent planktics) in the limestone beds. Such conditions suggest that the limestones may have been more productive than the adjacent shales and marlstones. Reduced surface salinity and greater stratification of the upper water column may have also contributed to the differences in assemblages preserved in the marlstones and calcareous shales. The onset of OAE 2 in the late Cenomanian is marked by an abrupt benthic oxygenation event ('Benthonic Zone') as Tethyan waters were drawn well north into the WIS, and cool Boreal waters spread across northwest Europe, known as the Plenus Cold Event. At this time, the WIS became an important ocean gateway for surface ocean circulation with rising sea level that helped facilitate the development and spread of OAE 2. A cyclonic (counterclockwise) gyre circulation in the WIS during deposition of the lower part of the Bridge Creek was driven by the difference between precipitation in the north and evaporation in the south. The gyre is represented by two modes, strong and weak, responsible for deposition of the limestone and marlstone, respectively. For the middle and upper parts of the studied section representing the plateau of OAE 2 and subsequent peak transgression of the WIS, the counterclockwise gyre was driven less by E-P gradient but by the amount of surface runoff from both margins of the WIS with deposition of limestone beds during the wetter (strong) phase and marlstones during the drier (weak) phase. Highest levels of TOC redevelop after OAE 2 in the early Turonian with the incursion or development of an oxygen minimum zone at the time of peak transgression. (c) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据