4.4 Article

Nanodiamond-based microRNA delivery system promotes pluripotent stem cells toward myocardiogenic reprogramming

期刊

JOURNAL OF THE CHINESE MEDICAL ASSOCIATION
卷 84, 期 2, 页码 177-182

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/JCMA.0000000000000441

关键词

Cardiomyocytes; Induced pluripotent stem cell; MicroRNA; Nanodiamond

资金

  1. Far-Eastern Memorial Hospital [107DN09, 108DN13]
  2. Chao-Yu Liu NYMU-FEMH Joint Research Program [NYMU-FEMH 108DN13]
  3. Cheng-Hsin General Hospital [109F-003C33]
  4. Taichung Veterans General Hospital

向作者/读者索取更多资源

This study utilized nanodiamond as a gene delivery vehicle to carry microRNA (miR-181a) into induced pluripotent stem cells (iPS) to promote cardiomyocyte-lineage differentiation. The miR-181a targeted Hox-A11, leading to elevated MyoD expression and enhanced cardiomyocyte differentiation.
Background: Gene therapy is the advanced therapeutics for supplying or replacing the genetic material in patients with inherited disorders. Recent clinical studies have made some progress in a wide range of applications, including monogenic disorders, neurodegenerative diseases, malignant tumors, and congenital diseases. Heart diseases, especially myocardial ischemia, remain one of the leading causes of mortality worldwide and usually result in irreparable cardiomyocyte damage and severe heart failure. Methods: Most advances in induced pluripotent stem cell (iPSC) technologies for promoting regenerative medicine and stem cell research. However, the driver molecules of myocardial-lineage differentiation and the functional reconstruction capacity of iPSC-derived cardiomyocytes are still an open question. Nanomedicine-based gene delivery provided a crucial platform to carry on the biogenomic materials for equipping functionalities and engineering the living organ environment. Nanodiamond (ND), a carbon-based nanomaterial, has been discovered and shown the high biocompatible and less toxicity for transporting protein, drug, and genomic plasmids. Results: Here, we applied ND as a gene delivery vehicle to carry microRNA (miR-181a), and then transfected into iPS to promote cardiomyocyte-lineage differentiation. Notably, miR-181a plays a key role in iPS-derived cardiomyocyte differentiation which directly targets Hox-A11, leading to elevated MyoD expression and enhanced cardiomyocyte differentiation. Conclusion: Our study demonstrated that miR-181a promotes iPSC differentiation into functional cardiomyocytes. Delivery of NANO-DIAMOND-miR-181a may host clinical potential to enhance the differentiation and recovery of the cardiogenic function in injured cardiomyocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据