4.4 Article

Environment and Mechanisms of Severe Turbulence in a Midlatitude Cyclone

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 77, 期 11, 页码 3869-3889

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS-D-20-0095.1

关键词

Deep convection; Gravity waves; Kelvin-Helmholtz instabilities; Turbulence; Mesoscale processes

资金

  1. Federal Aviation Administration (FAA)
  2. Australian Research Council's Discovery Program [DP200102516]
  3. National Science Foundation
  4. Australian Research Council [DP200102516] Funding Source: Australian Research Council

向作者/读者索取更多资源

A large midlatitude cyclone occurred over the central United States from 0000 to 1800 UTC 30 April 2017. During this period, there were more than 1100 reports of moderate-or-greater turbulence at commercial aviation cruising altitudes east of the Rocky Mountains. Much of this turbulence was located above or, otherwise, outside the synoptic-scale cloud shield of the cyclone, thus complicating its avoidance. In this study we use two-way nesting in a numerical model with finest horizontal spacing of 370m to investigate possible mechanisms producing turbulence in two distinct regions of the cyclone. In both regions, model-parameterized turbulence kinetic energy compares well to observed turbulence reports. Despite being outside of hazardous large radar reflectivity locations in deep convection, both regions experienced strong modification of the turbulence environment as a result of upper-tropospheric/lower-stratospheric (UTLS) convective outflow. For one region, where turbulence was isolated and short lived, simulations revealed breaking of similar to 100-km horizontal-wavelength lower-stratospheric gravity waves in the exit region of a UTLS jet streak as the most likely mechanism for the observed turbulence. Although similar waves occurred in a simulation without convection, the altitude at which wave breaking occurred in the control simulation was strongly affected by UTLS outflow from distant deep convection. In the other analyzed region, turbulence was more persistent and widespread. There, overturning waves of much shorter 5-10-km horizontal wavelengths occurred within layers of gradient Richardson number < 0.25, which promoted Kelvin-Helmholtz instability associated with strong vertical shear in different horizontal locations both above and beneath the convectively enhanced UTLS jet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据