4.8 Article

Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 41, 页码 17572-17580

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c07531

关键词

-

资金

  1. Spanish MINECO [MAT2017-89993-R, CTQ2017-89528, RYC-2016-19817]
  2. Spanish MINECO (Excellence Unit Maria de Maeztu) [MDM-2015-0538, CEX2019-000919-M]
  3. European Union [ERC-CoG DECRESIM 647301, COST-MOLSPIN-CA15128, H2020-MSCA-2015-706238]
  4. Generalitat Valenciana (Prometeo Program of Excellence)
  5. Universitat de Valencia [PRECOMP14-202646]

向作者/读者索取更多资源

Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CISS effect is demonstrated by cyclic voltammetry and electrochemical impedance measurements for both samples. Additionally, an implementation of the standard liquid-metal drop electron transport setup has been carried out, and this process helped to demonstrate the peptides' suitability for solidstate devices. Remarkably, the inclusion of a paramagnetic center in the peptide increases the spin polarization as was independently proved by different techniques. These findings permit the inclusion of magnetic biomolecules in the CISS field and pave the way to their implementation in a new generation of (bio)spintronic nanodevices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据