4.7 Article

Vibration properties and optimized design of a nonlinear acoustic metamaterial beam

期刊

JOURNAL OF SOUND AND VIBRATION
卷 492, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2020.115739

关键词

Nonlinear acoustic metamaterials; Vibration reduction; Optimized design

资金

  1. National Natural Science Foundation of China [12002371, 11991032, 11991034]

向作者/读者索取更多资源

This paper explores the manipulation laws and optimized design of the nonlinear acoustic metamaterial (NAM) beam, systematically studying the factors influencing vibration reduction properties and presenting an optimized lightweight NAM beam for low-frequency, broadband and highly efficient vibration reduction. The results could support future research, creation, and application of NAMs.
Lightweight, low-frequency, broadband and highly efficient vibration reduction is widely desired in various devices. Nonlinear acoustic metamaterial (NAM) is a new type of metamaterial that may possess these vibration reduction features. However, the laws governing the manipulation of the NAM vibration response and its optimized design have not been addressed. This paper numerically and experimentally studies the manipulation laws and optimized design of the NAM beam reported in [Nature Comm., 8: 1288(2017)]. The strongly nonlinear metacell consists of three bridging-coupled resonators: A Duffing oscillator, a flexural resonator and a vibro-impact resonator. Both time-domain and frequency-domain finite element models are established to calculate the vibrations of the beam. We systematically study the influences of the amplitude, nonlinear stiffness coefficients, resonance frequencies, mass and beam thickness on the bandwidth and efficiency of its vibration reduction properties. Moreover, based on these laws, we present an optimized lightweight NAM beam to realize the low-frequency, broadband and highly efficient vibration reduction with the greatly reduced attached mass. Finally, different NAM samples are fabricated to verify the efficient reduction effect. This work could support the study, creation and application of NAMs in the future. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据