4.7 Article

A novel methodology for analyzing modal dynamics of multi-rotor wind turbines

期刊

JOURNAL OF SOUND AND VIBRATION
卷 493, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2020.115810

关键词

Multi-rotor wind turbine; Modal analysis; Linear time-invariant model; High-fidelity model

资金

  1. Innovation Fund Denmark [7038-00113A]
  2. Vestas Wind System A/S

向作者/读者索取更多资源

This paper presents a novel methodology and systematic modeling method for investigating the modal dynamics of multi-rotor wind turbines, using comprehensive numerical simulations and analyses. The study reveals that rotor modes on a multi-rotor wind turbine behave similarly to single-rotor wind turbines, and low torsional stiffness at the rotor attachment point affects natural frequencies and mode splitting. The proposed dynamic modeling method is verified through simulations and analyses, providing essential insights for the design of multi-rotor wind turbines and single-rotor wind turbines with slender towers.
A multi-rotor wind turbine (MRWT) is accepted as a novel solution in reducing the rotor size without decreasing the energy harvesting capability compared to a single-rotor wind turbine (SRWT). However, there is no systematic methodology available for obtaining the modal properties of MRWTs. This paper presents a novel methodology and systematic modeling method of modal dynamics with comprehensive numerical simulations and analyses of MRWTs. In the methodology, Coleman transformation is employed to convert the nonlinear time-variant dynamics formulation of a MRWT into a set of linear time-invariant dynamic equations. Using HAWC2 and HAWCStab2 a method to establishing high-fidelity linear time-invariant dynamic models is presented. The structural modal dynamics of a trirotor wind turbine is systematically investigated by using modal analysis theory and interpreting the rotor speed-dependent dynamics visualized in a Campbell diagram. The investigation shows that rotor modes on a MRWT have similar behavior as for a SRWT and that low torsional stiffness of the rotor attachment point affects the first flapwise backward whirling modes by decreasing the corresponding natural frequencies. Moreover, the low torsional stiffness results in a delayed splitting of the asymmetric flapwise rotor modes. The simulations and analyses result verified the proposed dynamic modeling method. The major contributions in this paper provide the essential insights and guidance in the design of MRWTs but also for SRWT with slender towers. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据