4.8 Article

Radiation effects on lithium CFX batteries for future spacecraft and landers

期刊

JOURNAL OF POWER SOURCES
卷 471, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.228464

关键词

CFX; Radiation effects; Primary battery

向作者/读者索取更多资源

Future landers to the moons of the outer planets could be powered by higher specific energy primary batteries. Batteries based on lithium carbon monofluoride (Li/CFX) provide similar to 50% higher specific energy than heritage cells (Li/SO2 or Li/SOCl2) in relevant conditions. Radiation tolerance is a major concern due to the high radiation environment surrounding Jupiter and its moons. Gamma radiation exposure may also become the sterilization (a critical step for any lander to planetary bodies where life may survive) technique of choice because the alternative thermal technique (prolonged exposure to high temperature) results in significant capacity loss for Li/CFX cells. Several D-sized Li/CFX and Li/CFX-MnO2 cells have been exposed to gamma radiation from a Co-60 source. The energy and capacity of the cells decreased by less than 2% following radiation and trends regarding the open circuit voltage and impedance spectroscopy are reported. To better understand the effects of radiation, samples of individual materials have been exposed to radiation as well as three-electrode cylindrical Li/CFX cells. These component-level tests, along with the experimental cell tests, reveal that the electrolyte/electrode interaction in a full cell is the likely cause of increased impedance and decreased energy/capacity, following exposure to ionizing radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据