4.2 Article

Calendering analysis of non-isothermal viscous nanofluid containingCu-water nanoparticles using two co-rotating rolls

期刊

JOURNAL OF PLASTIC FILM & SHEETING
卷 37, 期 2, 页码 182-204

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/8756087920951614

关键词

Calendering process; nanofluid; non-isothermal process; lubrication theory; numerical simulations

向作者/读者索取更多资源

This study conducts a non-isothermal analysis of the calendering process using a water-based nanofluid with Cu-nanoparticles. The impact of nanoparticle volume fraction on various parameters is discussed, showing enhancements in pressure, temperature distribution, power input, and roll-separating force for higher nanoparticle volume fractions. Model II of dynamic viscosity of nanofluid has a greater impact on physical parameters compared to Model I.
This study is a non-isothermal analysis of the calendering process using a water based nanofluid withCu-nanoparticles. The basic flow equations are simplified under the lubrication approximation theory (LAT) and non-dimensionalized. Theoretical velocity and pressure gradient solutions are achieved, and temperature distribution is numerically computed by finite difference method. The impact of nanoparticle volume fraction on pressure distribution, fluid velocity, temperature distribution, power input, and separating force are presented through graphs and discussed. Nanoparticle volume fraction enhances the magnitude of pressure, pressure gradient, and temperature distribution. Power input and roll-separating force also rise for higher nanoparticle volume fraction. Model II of dynamic viscosity of nanofluid has a greater impact on physical parameters as compared to the model I of dynamic viscosity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据