4.8 Article

Bilayer-Coated Nanoparticles Reveal How Influenza Viral Entry Depends on Membrane Deformability but Not Curvature

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 11, 期 17, 页码 7190-7196

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c01778

关键词

-

资金

  1. Wallenberg Academy Fellowship
  2. Swedish Research Council [2017-04236]
  3. Swedish Research Council [2017-04236] Funding Source: Swedish Research Council

向作者/读者索取更多资源

Enveloped viruses infect cells via fusion between the viral envelope and a cellular membrane. This membrane fusion process is driven by viral proteins, but slow stochastic protein activation dominates the fusion kinetics, making it challenging to probe the role of membrane mechanics in viral entry directly. Furthermore, many changes to the interacting membranes alter the curvature, deformability, and spatial organization of membranes simultaneously. We have used bilayer-coated silica nanoparticles to restrict the deformability of lipid membranes in a controllable manner. The single-event kinetics for fusion of influenza virus to coated nanoparticles permits independent testing of how the membrane curvature and deformability control the free energy barriers to fusion. Varying the free energy of membrane deformation, but not membrane curvature, causes a corresponding response in the fusion kinetics and fusion protein stoichiometry. Thus, the main free energy barrier to lipid mixing by influenza virus is controlled by membrane deformability and not the initial membrane curvature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据