4.6 Article

Coordination Effects in Polymer Electrolytes: Fast Li+ Transport by Weak Ion Binding

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 124, 期 43, 页码 23588-23596

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c08369

关键词

-

资金

  1. Graduate School of Chemistry of the University of Munster
  2. STandUP for Energy

向作者/读者索取更多资源

In view of the limited ionic conductivity and low lithium transference number in classical poly(ethylene oxide) (PEO)-based salt-in-polymer electrolytes, employing alternative polymer architectures, e.g., polyester homopolymers or copolymers, is a promising approach. To shed light on the influence of the coordination properties of different polymer architectures and to identify their influence on Li ion transport, different polymeric structures are compared, i.e., poly(e-caprolactone) (PCL), poly(trimethylene carbonate) (PTMC), and a PCL-co-PTMC random copolymer, combined with lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) at varying Li+/monomer ratios r. Electrophoretic NMR (H-1 and F-19 eNMR) is applied to determine the electrophoretic mobilities of both ionic species, from which partial conductivities and Li transference numbers are calculated. In comparison to PEO-based electrolytes, the ester-based systems show a much higher lithium transference number (similar to 0.5 compared to similar to 0.2), while the total ionic conductivity is lower. However, the partial lithium conductivities are found to be almost equal in PEO- and PCL-based electrolytes. The results show how via modifying the coordination strength, the competition of Li+-polymer coordination and Li+ ion pair formation can be finely tuned to yield either systems with a maximized total conductivity or maximized Li transference number. Thus, for the promising class of polyester-based polymer electrolytes, showing excellent lithium conduction properties, a molecular level-based understanding of the electrochemical transport parameters is derived, complementing the segmental motion-based description of ion transport with the additional effects of ion coordination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据