4.5 Article

Absorption and Circular Dichroism Spectra of Molecular Aggregates With the Full Cumulant Expansion

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 124, 期 39, 页码 8610-8617

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.0c05180

关键词

-

资金

  1. European Research Council [ERC-AdG-786714]
  2. NSF [CHE 1800301, CHE 1836913]

向作者/读者索取更多资源

The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic techniques such as linear absorption and circular dichroism. To compare calculated Hamiltonians to experiments, a lineshape theory is needed, which takes into account the coupling of the excitons with inter- and intramolecular vibrations. This coupling is normally introduced in a perturbative way through the cumulant expansion formalism and further approximated by assuming a Markovian exciton dynamics, for example with the modified Redfield theory. Here, we present the implementation of the full cumulant expansion (FCE) formalism (J. Chem. Phys. 142, 2015, 094106) to efficiently compute absorption and circular dichroism spectra of molecular aggregates beyond the Markov approximation, without restrictions on the form of exciton-phonon coupling. By employing the LH2 system of purple bacteria as a challenging test case, we compare the FCE lineshapes with the Markovian lineshapes obtained with the modified Redfield theory, showing that the latter presents a less satisfying agreement with experiments. The FCE approach instead accurately describes the lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the FCE approach will become a valuable tool for accurately comparing model exciton Hamiltonians with optical spectroscopy experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据